

Institut für Informatik Prof. Dr. G. Lausen Dr.-Ing. T. Hornung Georges-Köhler Allee, Geb. 51 D-79110 Freiburg lausen@informatik.uni-freiburg.de hornungt@informatik.uni-freiburg.de

$\begin{array}{c} \hbox{\tt \"{U}bungen zur Vorlesung}\\ \textbf{\textit{Datenbanken und Informations systeme}}\\ \textbf{Wintersemester 2012/2013}\\ 9.1.2013 \end{array}$

10. Aufgabenblatt: Funktionale Abhängigkeiten

Aufgaben, die nicht bewertet werden

Übung 1

Sei \mathcal{F} eine gegebene Menge von FAs über einer Menge von Attributen V. Eine Armstrong-Relation $r_{\mathcal{F}} \in Rel(V)$ ist definiert wie folgt: für jede beliebige FA f über V gilt: $r_{\mathcal{F}}$ erfüllt $f \Leftrightarrow f \in \mathcal{F}^+$.

Armstrong-Relationen können mit folgendem Algorithmus berechnet werden:

- (a) Ignoriere zunächst FAs der Form $\emptyset \to A$ für $A \in V$.
 - Für jede Menge $X \subset V$ mit der Eigenschaft $X = X^+$ wählen wir $r_X = \{s_X, t_X\}$ gerade so, dass $s_X[A] = t_X[A]$ gdw $A \in X$. Seien r_X, r_Y zwei so gebildete Relationen, dann seien o.B.d.A. die in den einzelnen Tupeln von r_X verwendeten Konstanten paarweise unterschiedlich zu den in r_Y verwendeten Konstanten.

Die gesuchte Relation $r_{\mathcal{F}}$ ergibt sich durch Vereinigung der einzelnen Relationen r_X .

(b) Betrachte nun FAs der Form $\emptyset \to A$ für $A \in V$. Somit $\emptyset^+ \neq \emptyset$.

Ändere die gemäß (a) konstruierten Relationen r_X so ab, dass $\pi[A]r_X = \pi[A]r_Y$ für betrachtete X, Y und $A \in \emptyset^+$.

Wenden Sie diesen Algorithmus auf folgende Beispiele an:

- $V = \{A, B\}, \mathcal{F} = \emptyset.$
- $V = \{A, B, C\}, \mathcal{F} = \{A \to B, B \to C\}.$

Übung 2

Sei $V = \{A_1, \dots, A_n\}$. $X \subseteq V$ heißt Schlüssel für V (bzgl. \mathcal{F}), wenn

- $X \to A_1 \dots A_n \in \mathcal{F}^+$,
- $Y \subset X \Rightarrow Y \to A_1 \dots A_n \notin \mathcal{F}^+$.

Ein Verfahren zum Finden eines Schlüssels mit Hilfe des XPlus-Algorithmus ist wie folgt:

- (1) Beginne mit X := V.
- (2) Für jedes $A \in V$: falls $(X \setminus \{A\})^+ = V$, dann $X := X \setminus \{A\}$.
- (3) X ist ein Schlüssel.

Verwenden Sie die oben aufgeführte Definition, um folgende Aufgaben zu lösen:

- (a) Beweisen Sie die Korrektheit des Algorithmus.
- (b) Sei $V = \{A, B, C\}$ und $\mathcal{F} = \{A \to B, B \to C, C \to A\}$. Zeigen Sie, dass jeder mögliche Schlüssel mit obigem Algorithmus hergeleitet werden kann.

Übung 3

Zeigen Sie, dass das Axiomensystem {A1, A2, A3} durch {A6, A7, A8} ausgedrückt werden kann.

Aufgaben, die bewertet werden

Übung 4 (2 Punkte)

Gegeben sei das Relationsschema $V = \{A, B, C\}$, sowie die Relation r mit

$$r = \begin{array}{cccc} A & B & C \\ \hline a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_2 & b_2 & c_3 \\ a_3 & b_2 & c_4 \end{array}$$

- (1) Geben Sie alle nichttrivialen funktionalen Abhängigkeiten an, die von r erfüllt werden.
- (2) Fügen Sie ein Tupel zu der Relation r hinzu, so dass r noch maximal zwei nichttriviale funktionale Abhängigkeiten erfüllt. Geben Sie auch diese beiden funktionalen Abhängigkeiten an.
- (3) Können im Allgemeinen funktionale Abhängigkeiten mit Primary Keys alleine erzwungen werden? Begründen Sie Ihre Antwort anhand eines Beispiels.

Übung 5 (2 Punkte)

Zeigen Sie, dass das Axiomensystem {A6, A7, A8} durch {A1, A2, A3} ausgedrückt werden kann.

Übung 6 (2 Punkte)

Sei ein Relationsschema R mit Attributemenge

$$V = \{A, B, C, D, E\}$$

und der Menge von funktionalen Abhängigkeiten

$$\mathcal{F} = \{AB \rightarrow C, BC \rightarrow D, CD \rightarrow E, DE \rightarrow A\}$$

gegeben.

- a) Welche der folgenden funktionalen Abhängigkeiten sind in \mathcal{F}^+ enthalten:
 - (a) $AB \rightarrow D$
 - (b) $AB \rightarrow E$
 - (c) $AB \rightarrow A$
 - (d) $A \to A$
 - (e) $A \rightarrow B$
 - (f) $A \to C$

Begründen Sie jeweils Ihre Entscheidung!

b) Geben Sie alle Schlüssel zu R an.

Abzugeben durch Einwurf in den Briefkasten Raum 01-025 Gebäude 51 bis spätestens 17.01.2013, 12:00 Uhr